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ABSTRACT

The stability of a circular cylindrical shell subjected
to a moving ring load with a constant velocity has

been examined in detail when both longitudinal and

transverse inertia effects are included, using both

the Timoshenko and the Fliigge equations. A lower
resonance speed has been found, which apparently

has been concealed in a recent paper.
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NOMENCLATURE

mean radius of shell
see Eq. (27)

see Eq. (28)

see Eqs. (61) and (62)
see Egs. (39) and (40)

see Eq. (34)

Young's modulus

shell thickness

(1 - v3)F/\E

ring load per unit circumference
at/a

time

u/a, wW/a

axial and radial displacements, respectively
velocity of ring load

physical resonant speeds

V/a

nondimensionalized resonant speeds
see Eq. (20)

x/a

axial coordinate

see Eq. (52)

X - vt
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E/p(1 - %)

see Egs. (73) and (74)
see Eq. (75)

1 - v2

see Eq. (13)

see Eq. (49)

Dirac delta function
\A3

+V-1

h/a

Poisson's ratio
Fourier transform variable
shell density

viNe

Fourier transformed quantity

Y=




SECTION 1
INTRODUCTION

In recent years, the problem of the dynamic response of circular
cylindrical shells has received considerable interest because of their use
in aerospace vehicles. In particular, many investigations have examined
shells subjected to traveling loads: Nachbar [ l]1 considered the dynamic
response of an infinitely long cylindrical shell to moving discontinuous loads.
Brogan [ 2] considered the problem of a uniform pressure front moving over
a finite cylindrical shell which was taken to be internally pressurized, but
the resonant modes were not considered and the solution obtained was not
valid for all values of time. Bhuta [ 3] obtained the transient response of
3 finite shell which was not pressurized, but the resonant modes were
studied in detail. It was also pointed out in [ 3] that a critical velocity exists
for a semi-infinite shell for which the deflections become unbounded. The
same critical velocity was obtained by Prieskin [4] for an infinitely long

cylindrical shell.

In all of the forementioned investigations, only the axisymmetric
loading was considered. However, in ( l], viscous damping in the radial
direction was assumed to be present. In [2], [3], and [4], the investiga-
tions concerned the response of undamped shells. Also, [ 1] differs from
the rest in that the acceleration in the axial direction was considered,
whereas in other prior investigations only radial inertia was taken into
account. The critical velocity of [4] due to a bending resonance does not
appear in the solution of [ 1], but rather a much greater critical velocity
due to axial motion resonance appears. The resonance due to bending seems
to have been concealed because of the assumed presence of damping.
Unfortunately, however, as is shown in the present investigation, the

resonance due to bending occurs at a much lower velocity than does the

lNumbers in brackets designate References at end of paper.
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resonance due to axial motion and is important for aerospace vehicle design.
The resonant character of the solution was brought out also in [ 3] by having
let the shell length become successively larger and having noted that at the

critical velocity the dynamic loading factor became infinite,
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SECTION 1II
STATEMENT OF PROBLEM AND METHODS OF SOLUTION

It is the purpose of this paper to investigate the dynamic stability and
solve the problem of the dynamic response of an infinitely long cylindrical
shell subjected to a ring load moving with constant velocity, taking into
account the accelerations in both the radial and the axial directions. It is
shown that even when both accelerations are considered, the resonance due

to bending occurs at a lower velocity than the one due to axial motion.

The problem is solved using Timoshenko's equations [5], as in [1]
but without the presence of damping, and Fliigge's equations [ 6]. The results
of the analyses are compared, and it is found that Timoshenko's equations
suffice for values of the load speed, up to the first critical speed. It is found
that above that speed, there is really no proper or physically meaningful

steady-state solution, as was concluded also in [4 ], and that an initial value

- problem should be solved for such speeds. Near the axial resonance, the

effects of shear deformation and rotatory inertia should be included also.
In addition, expressions for dynamic amplification in the deflections are

derived.

The analysis is carried out using Fourier transforms. The resonances
or instabilities are shown by the fact that for certain velocities the inversion

integral failseto exist.
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SECTION III
ANALYSIS

Solution Using Timoshenko Equations

The shell~-of thickness h and radius a, and of a material having a
modulus of elasticity E, Poisson's ratio v, and density p--is loaded by a ring
load moving with a constant velocity V, as shown in Fig. 1, and the radial
displacement W is assumed to be positive inward. The axial displacement
and the pressure and axial coordinates are denoted by u, p, and X, respec-

tively. The equations cf motion [5] for the shell are then

En (6% vow\_ . 8%
2\522 o=/ "
1 -v \ax adx

and

3 4__ _ - 2o
aEh 5 8_:, 4 —Eh (¥ vg_—l: = pa - pha?-_—;’- . (2)
12(1 -v%) 0%t 1.2\  ox at
Next the following variables
X =h/a , a2=E/p(l-v2) , X=ax ,
t=zat/a , u=zau , W=aw , (3)
P = PAE/(1 - v

are introduced into (1) and (2) to obtain the equations of motion in a

dimensionless form:

[~
™~
=4
(33}
c

(4)
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and

4 2
kzu+w -va—u+-a—2= pix,t)
axt 9x  g¢

For the moving ring load, the pressure is given by

P= poﬁ(x - vt)

where Po denotes the intensity of the load, 6 the Dirac delta function,

and v the nondimensional speed of the load. The actual speed V of the

load is related to v by

v=a,V

To seek the steady-state solution, one introduces the transformation

zZ =X - vt

and sets all quantities to be functions of the new variable z.

results in

(1 - vz)u" - vw' =0

)\2

12

wiv + vzw" +w-vyu = poé(z)

where ( })' = d( )/dz.

(5)

(6)

(7)

(8)

(9

(10)

J




Operating with an exponential Fourier transform on (9) and (10) gives

~.__YPo
3= > (11)
£(1 - via

and

(12)

where

2

2,2 v
- +1 - . 13
e - v —— (13)

Here £ is the transform variable, and the transform of a quantity ( ) is

denoted by (~). Inverting (11) and (12), one has

LVPy exp(~-1£z)
= d¢ (14)
: 2n(l - vz) _/_: §a

and

(o 0]
w = 32/ exp(-1§2) g | (15)
2w o A
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Determination of Resonant Speeds for Timoshenko Equations

Now the foregoing integrals are well defined except where the
velocity is such that A has a double root on the real axis, The condition

2 2
v Ah v oo (16)
3 .

For these values of v, the integrands in (14) and (15) have second-order

for this to be so is

poles on the axis of integration, and for such a situation, the integrals
involved do not exist even in the sense of a Cauchy principal value. It will
be shown later in the analysis that such nonexistence of a solution to a
physical problem implies a resonance or an instability in the sense that the
displacements everywhere become unbounded. Values of v for which (16) is
satisfied are the resonant speeds. It will be shown that there is one root
near v = ()~2/3)l/4 and two near v = 1. Actually, there are other roots to f
(16) also, but since only positive real roots are of physical significance,

the rest are discarded. The roots can be tabulated easily as functions of

v and A. In most practical problems, \ is certainly less than 0.1 (i.e., a
thin shell is assumed, since the statement A\ £ 0.1 implies that the thickness
of the shell is less than 0.1 of the radius) for it is only in such regimes that
the shell equations are valid. For values of X > 0.1, it is doubtful if either
Timoshenko's or Fliigge's equations are valid. Thus, a perturbation solution
in \ is a valid way of obtaining the approximate roots of {16). To obtain the

root near (7\2/3)1/4, one sets v = v o, to be given by

2 2
Verl Z ¢V te \£) +e o (17)
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where ¢ = \/N3, Substituting in (16) and equating the coefficients of the like

powers of €, one has

2
_ 4 Ve .
VCRI1 =Ne V1 - Ve [1 TEIY 2] PRV . (18)

2y1/2 >> ¢ vZ/4. The maximum value

Equation (18) is valid when (1 - v
of v is 0.5, so that the above relation is always true. In terms of physical

velocity V, (18) gives

Vi . Eh ___mndf
CR1 pa[3(l - VZ)]]'/Z 6932(1 - VZ)

+o 0. . (19)

The first term of (19) is the square of the bending resonant speed given in
[4], and the additional terms in (19) arise from the consideration of
longitudinal inertia in the present investigation. It is apparent from (19)

that the contribution from the longitudinal inertia terms is indeed small.

To obtain the roots of (16) near v = 1.0, one sets v = VCR2 to be
given by

2 2
vCR2=v0+¢ vyt oo . (20)

Substituting from (20) into (16) yields

R WAL A . (21)

In terms of physical speed

2, 2
2 _ E Ev™h L.
CR2 ° + + . (22)

Vv
p(1 - v9) 3pa’(1 - v




Another resonant speed will occur when the constant terms in

ali.e., 1 - vzl(l - vz)] defined by (13) equal zero. This situation corre-
sponds to a double root at § = 0. Setting the constant term to zero yields
the third critical speed

2 2
Vépy=1-v : (23)

In terms of physical speed, (23) gives
E

= = . 24
5 (24)

It should be remarked that when v2 =1, i.e., V2 =E/p(l - vz), there is
no meaningful solution to the differential equations (9) and (10). Thus,
one can conclude that there are three resonant speeds, given by

2 Eh Eh%v?

= - o0
CR1 pa[3(1 - vZ)]ITZ 6pa2(1 - vZ)

2 E
2. Vv T e e
CRz " 7107

2 _E
3. Verstw

The first resonance, and the one with the lowest speed, evidently corresponds
to bending resonance. The second is a resonance which occurs when the load
speed becomes equal to the plate-wave speed in the shell and is an axial

vibration resonance. The third resonance occurs when the load speed

becomes equal to the bar-wave speed and is also an axial vibration resonance.

It is not clear physically as to why the bar-wave speed should enter at all. In
fact, for'load speeds of the order of magnitude of either the bar- or the

-10-
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plate-wave speed, it is doubtful that the equations of motion without the

effects of shear deformation and rotatory inertia are valid.

It is obvious from the manner in which the instabilities have been
ohtained here that these critical or resonant speeds depend only on the
velocity of the pressure wave and not upon the manner in which the pressure

may be changing with z above and behind the pressure wave front.

Evaluation of Displacements for Timoshenko Equations

The integrals (14) and (16) will be evaluated next. It is obvious that

the integral in (14) can be obtained from (15) because

us= -

w! . {25)
1- v2

Hence, it suffices to evaluate (15), which in explicit terms is

0
Pg exp(-.£2)
@) = 20 d . 26
T - 5454/4 - v2§2 +1 - [VZ/(I - v3)] : o

First, one considers the case whenv < Ve The roots of the

R1l’
denominator of the integrand are given by

§z=zvzhg<l_ v2 _v4>”2
1-v2

2 -v (27)
Zazx b
Since v < VeR1? b is a real and positive number. Then the roots are
located at
a b
1 1
S e k| (28)
Ne A

-11-



where
[( w2 )1/2 vz]1/z )
=\ -—— + = (29
*1 1 -v ¢
and
2 1/2 211/2
b, ={{1 ¥ - "_] . 30
1 [( l-vz> ¢ (30)

For z > 0, it suffices to integrate along the real axis and a semicircular
contour in the lower-half plane, picking up the contributions from the poles
at § = :l:allNE - n.bl/'sfe- . Performing the indicated integration results in

Po OxP(-!blN:) sa, sa,
w ’-Z-*TI-[} - vi/(l - vz)]1,2[1 - vzl(l - ‘F) . v4,‘2]112\‘1 cos T+ by linT , 820 - (31)

From symmetry considerations, w is an even function of z; hence

Py exp(zblN:) za, - s, 0
w-W;-[l-vzl(l-vz)]llz[l-vz/(l-vz)-v4/|2]”z o1 CO.T- l.n-N—E- 85 ) (32)

The maximum value of w occurs at z = 0 and is given by

_Po I[l-(vz/l - vz)]l/z + vzltlllz

=29 33
Ymax = 2 112 w20 vA] V21- v2A1- v2) - w31 2172 (33)

The dynamic amplification factor is defined here as the ratio of the
maximum dynamic deflection to the maximum static deflection (i.e., the

-12-



deflection that would occur when v = 0). Hence, the dynamic deflection

(D.A.) is given by

o [ - w20 w32 4 20 V20 L 2304

= (34)
[1 - Vz/(l- VZ)]I/Z[I - VZ/(]. - VZ) - V4/E 2]1/2

The dynamic amplification evidently becomes unbounded as v approaches

one of the critical velocities.

To uncouple the effects of axial motion from the effects of radial
motion, it suffices to neglect the term v(du/9x) in (5). The term v(dw/3x)
is retained in (4) so that the axial displacement u can be obtained. The
results of this approximation can be analyzed from the theory previously
considered in the present paper. The neglect of v(9u/3x) removes the term
-vz(l - vz)"l in the equation for A, viz., Eq. (13). Hence, by this theory

there are only two resonant speeds present, and they are given by

2 2 Eh

v = ¢ or Vv T cm————— (35)
CR1 CR1 a(l - VZ)"/-3
and
2 2 E
v =1 or Vv D se————e . (36)
2 2
CR CR o(l - vz)

The first resonant speed given by (35) agrees with the one of [4] up to a

2,1/2

factor of (1 - v The solution for the displacement now becomes

Py exp(-zgl/'sf;) A z'é'l - zzl
w=2~/‘_ 0 -(v4/‘2)]1/2<a1 COST+bl s1nT> , 220 (37)

and

-13-




w = ZNI; [l - (v4/‘ 2)] l’i\al cos -7:- - bl sin 7‘—

Py exp(zi;1 INe) zEl - z?l) <o
s Z 3

where
V4 1/2
31 = {1 +—z'
€
and
. =< ] ﬁ)l/z
1 2
and v < VCRI® The maximum deflection again occurs at z = 0, and is

w X0 1
max o [1- (vzle ] 1/2

The dynamic amplification factor is obtained from

1

D.A. =
[1 - (v¥7e)]1/2

The principal differences in the expression given above are in the neglect

of the vz/(l - vz) terms. The first resonant speed VR’ corresponding

(38)

(39)

(40)

(41)

(42)

to the case where the axial coupling is not neglected, differs from the case

where the axial coupling is neglected by terms of order h/a. But because

h/a is usually quite small, this approximation ig certainly a valid one.

Also,
the resonance near the bar-wave speed disappears if the axial coupling is

neglected. However, since the shell equations probably are not valid in this

regime of the velocities, the difference is not of much importance.

-14-
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Solution Using Fliigge Equations

The two Timoshenko solutions will be compared now with the solution
obtained from the Flugge equations ([6], pp. 209 - 219), viz.,

2

(1 - vz)u" + vw! -E‘;-w"' =0 (43)
2 eZ . 2 e2
vu'-€—4-—u"'+—4—ww+v w" + l+2— w = . (44)

Here w is measured positive outward, p is positive when it is a suction
rather than a compression, and u is measured positive in the positive
x-direction. All quantities in (43) and (44) are taken to be functions of

z = x - vt, and the notation of Fliigge is changed to agree with that of
Timoshenko.

Operating with Fourier transforms on (43) and (44) yields

2
201 - V¥ - L§<V + g2>w =0 (45)

and

2 2 2
N I S

where p, as before, has been taken to be pOG(z) for the traveling ring load.

Solving for W and W, one has

vy + (2708715,
a'(€)

(47)

<15«
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and

g2 - vip,

VESTI® (48)
where '
2 2 2 2
a'tg) = g2 (v +‘—4-e2> -1 - vz)[‘;- g - v22 4 (1 *%‘)” . (49)

Again it suffices to study only w, since u can be obtained from w by using

(43). Thus, one must consider the integral

wW =

2 oo
-po(l -v) f §zexP(-L§Z)d§

2 N (Y

Determination of Resonant Speeds for Fliig_ge Equations

As before, the integral will not exist for values of v such that there

are second-order poles on the real axis. The condition for this to be so is

2i2 2 2
[vz(l --vz)‘~|-w2 ] -ez[l-vz-%—][<1+‘—4—>(l -vZ) -v2]= o

Equation (51) is a higher degree equation than (16). The extra root
is located at a value of v greater than 1.0 and, as such, is not of much
physical importance since it is unlikely that the shell equations without

shear deformation and rotatory inertia are valid for values of v in this

-16-
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range. As inthe Timoshenko equations, thereis a root nearvs= Ne. Setting
vz =ex, te le gives Xg = (1 - vz)l/Z and X, = («1/2){v + vz). Hence,

r
vz=el\/l-v2--;-(v+v2)¢+---] . (52)

This result compares well with the result from the use of the Timoshenko

equations with the axial coupling, viz.,
2 2
vize¢Vl - v -Zz—e+--' (53)

obtained from (18). The critical physical speed is given by

v E h 1(v +v3)En®

- oo (54)
p[31-v41 e a 6 50 .02 a2

Again, the first term of (54) agrees with [4]. The two roots greater than
unity are very close together, differing from unity by terms of order ¢ 2 and
from each other by terms of order ¢ 4. They will not be investigated here,
since their existence is doubtful, because when the equation of motion was
derived, terms of order e 2 were neglected. Hence, any term of order
greater than ¢ 2 should be under suspicion. Dropping terms of order greater
than ¢ 2 from (51) gives

v - vB2 4 ve B3 - v -1 -vB1 -vEavd =0 . (55)
The meaning of the double root of A'(f) near v = 1 is now clear: It arises

from the factor (1 - vz) common to all terms of (55). The differential

equations themselves predict a resonance at this value of v in the axial mode.

«]lT-



Canceling the factor (1 - vz) yields

Vil -vy) - e -vi - +vv¥ =0 . (56)

The corresponding equation from the Timoshenko equations from (16) is

vil - vh) - e v oV =0 . (57)

The root near v = Ne is unaffected, but the root near v = 1 now becomes

Vi1 41402 (58)

which differs from the results of the Timoshenko equations by a term of

the order of ¢ 2. The Timoshenko result is given by (21).

Finally, ‘there is one resonance which will occur if the constant term
in (49) disappears: There would be a second-order pole at the origin in the

integrand for w. The condition that the constant term be zero is

2 v2

V =1 ¢ o
(1 +e2/4)

(59)
2 2

2 ,ve
~1 - —
1 -v + y

This value of v will always be slightly less than unity.

Evaluation of Displacements for Fliigge Equatiqops

The integral for w will now be evaluated. The procedure and results

are similar to those for the Timoshenko theory. The terms of order greater

-18-



than ¢ 2 will be retained until the end of the analysis, For v < VeR' there
are four simple poles located at

a, b,
a4, 2 60
3 *N/;* t N7 (60)
where
2. L0 - Praptyi - w2t v Pra)tP e P vweize?)
2 (1 - 2/4p2)
2 [ - €2/48%)01 - v218% + e214)) 12 _ (vEle + ve /283
b, = 5 —3 (62)
' (1 -¢%/4p%)
and
82-1-v% . (63)

As before, the integral for w is an even function of z and the integral for
u is an odd function of z. For z > 0, the use of a semicircular contour
in the lower-half plane is made in evaluating (50). The result of the

integration is

Py exp(-zbz/'\/;)
VTR (1 - € 2/488)(1 - v2/p% 4 ¢ 2/4) - (vPle +ve 28R 12

2,,.2,1/2 za za
(1 - “/48% 2  [za,
x(1 : vZ/BZ " ‘2/4)1/2[3.2 cos(—--.\fe >+ b, sm(v.e—-)] y 2>0 . (64)

-19-
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For z <0, one aﬁbatitutes -z for z in (64). The maximum deflection again

occurs at z = 0 and is given by

w .ﬂ_ 1 ) l-cz/4z l-vz/ z+cz/4 l/2+ vz/c -0'vc/22 ”z, . (65)
maX e (1~ v/pY 4148 (1 - 5148901 - vE/B 4 C14) - (v 4 ve /2851

The maximum static deflection is obtained by putting v = 0 into (65) and

is given by

w P 1 1 . (66)
max statie " 200 (1 W 4 Z/ T (L0 -« 20 - VT - v 2[R

The dynamic amplification factor, as defined earlier, is

1 -v2aeBayl/2 Lt - <2740 - v2 + 214 M2 - yep2}11?
D.A. =
(1 -ve1pé 4% eyt /e |[(1 - Crapt - Vit 4 F1a A L Bl v 28t e

(67)

Next, the powers of ¢ higher than first will be neglected. However,
this must be done with caution since the order of magnitude of v is not known
precisely. It is known that v is at least of the order of Ne but could be of
higher order ine. To carry out this procedure, one sets vINe = ¢ and
carries ¢ in all terms, assuming ¢ is of order one. The actual procedure
then is to carry only first pdwers of ¢, since a factor of ¢ 2 is already taken

out by setting ¢ = v/Ne. The results are

Z]l/2

2 [0 - v%) - 2 - v
a = )
1 -¢9

+ ¢2(1 - e¢z) +e/2 (68)

~

0



2 2, 291/2 .2 2
2 [0-vH-(2- - 0%(1 - €9%) - ¢/2
bZ = [( v) - ( v )‘IL] — ¢ ( €p) - ¢ (69)
- (¢
Py exp(-zbll'J;)(l - ‘¢2)l/2 [ VZ) ¢¢2] 1/2
w = - -
e (1 - v - 9% - el@+v - vEet - 20°1]177
22 4 b, sin 2 >0
X a.z cos T 2 sin 7;— , Z (70)
o Pl v i@ B2 g T2 - 6B Y20 - o (71)

max " 3% (1 - v2 - e¢z)”2[(1 VD) - ez tv +vd)e - Z¢%]|1/2

D.A. = a - Vz)(l - ‘¢2)[(1 - VZ)I/Z - ve/Z]ll2

= . (72)
1 -vZ- e¢2)”2][(1 5 - <2 vHelNZ. 42 [w/2) -szlelln

Response in the Supercritical Range

For values of v between the first and second resonances, given by
(19) and (22), respectively, the integral (15) defining w can also be evaluated.
In this case, there will be four simple poles, all on the real axis and located
at§ = % a;, *ay. Only the Timoshenko solution will be discussed for this

case. The poles are given by

2 1/2
Zaf =vl 4 [v4 - ¢ 2(1 - ;—2.>] (73)
and
2 1/2
205 = V2 + [v4 - 2(1 - %)] . (74)
8

-21-
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The integral (15) then is defined in the sense of a Cauchy principal value
and is

Po 1 sin (Ezz) sin ('&'lz)
'é'[ B

W=

] y 2>0 (75)

ve ol - verpéytle %2 %1
where :1 = (2/¢ )°l and EZ = (2/¢ )az. The solution for z < 0 is obtained by
setting -z for z in (75).

The physical meaning of the solution (75) is not at all clear. The
solution predicts that both the deflection and the slope are zero under the
load and, thus, supplies an utterly improbable result; such a result does
not appear to be physically realizable. It is felt that for values of v in
this range, an initial value problem should be solved, since it is known
[7] that the steady-state problem is an artificial one. Values of v should
really be derived from a transient solution by allowing time to become
unboundedly large. This problem is beyond the scope of the present

investigation. For a related analysis, the reader is referred to [8].
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SECTION 1V
SUMMARY

The stability of a circular cylindrical shell subjected to a moving ring
load with a constant velocity has been examined in detail when both longitu-
dinal and transverse inertia effects are included, using both the Timoshenko
and the Fliigge equations. It has been found that the resonance due to bending
occurs at a lower velocity than that reported in [1]. The resonance due to
bending is concealed in the solution of [ 1] because of the assumed presence
of viscous damping in the radial direction. However, a bending resonance
occurs at a much lower velocity than that in [ l] and is of importance for
design of aerospace vehicles. The instabilities have been obtained in the
present paper using Fourier transforms without obtaining the entire solution.
The response of the shell is obtained in the subcritical range for Timoshenko
and Fliigge equations. Expressions for the dynamic amplification in the
deflection have been given. The critical speeds obtained by using Fligge
equations differ by only a small amount from those given by the Timoshenko

equations.

A formal solution for the response in the supercritical range has been
obtained for the Timoshenko equations. The formal solution does not appear
to be physically meaningful. Therefore, it is felt that an initial value problem
should be solved, including the effects of shear deformation and rotatory

inertia, for values of velocity in the supercritical range.
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